

Search for Dijet Resonance in pp Collisions at CMS and ATLAS

Sertac Ozturk

Cukurova University / Fermilab

Search for Dijet Resonance

The results of Dijet Resonance search based on 315 nb⁻¹ data from ATLAS was accepted by PRL.

http://arxiv.org/abs/1008.2461v2

- vI, I4 August 2010
- v2, 29 September 2010
- The results of Dijet Resonance search based on 2.88 pb⁻¹ data from CMS was submitted to PRL. It is first research and jet paper from CMS.

http://arxiv.org/abs/1010.0203

vI, I October 2010

Dijet in Standard Model

$$\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) \hat{\sigma}_{ij}(p_1, p_2, \alpha_s(\mu^2), Q^2/\mu^2)$$

- What is a Dijet?
 - ✓ Dijet results from simple 2→2 scattering of "partons", dominant process
 - √ Dijet is the two leading jets in an event

Event Display

CMS

Run: 142664

Event: 29100333

Dijet Mass: 1922 GeV

The highest- m^{jj} central event observed

 $m^{jj}=1.77$ TeV. $p_T^{j1}=1.1$ TeV. $p_T^{j2}=480$ GeV, partly in calorimeter gap.

Georgios Choudalakis

ICHEP₂₀₁₀ - Jet searches in ATLAS

$$m = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$$

Resonance Models

Model Name	X	Color	J^P	$\Gamma/(2M)$	Chan
Excited Quark	q*	Triplet	$1/2^{+}$	0.02	qg
E ₆ Diquark	D	Triplet	0^+	0.004	qq
Axigluon	A	Octet	1+	0.05	$ q\bar{q} $
Coloron	C	Octet	1-	0.05	$ q\bar{q} $
RS Graviton	G	Singlet	2+	0.01	qq̄,gg
Heavy W	W'	Singlet	1-	0.01	$q\bar{q}$
Heavy Z	Z'	Singlet	1-	0.01	$q\bar{q}$
String	S	mixed	mixed	0.003 - 0.037	$q\bar{q}$, qq , gg and qg

- The models are listed.
 - ✓ Produced in "s-channel"
 - ✓ Parton-Parton Resonances
 - Observed as dijet resonances.
- Search for model with narrow width Γ.
- ATLAS has only searched for excited quark model.
- CMS has searched for the all models.

Experimental Technique

- Measurement of dijet mass spectrum
- Comparison to PYTHIA QCD Monte Carlo prediction
- Fit of the measured dijet mass spectrum with a smooth function and search for resonance signal (bump)
- If no evidence, calculate model independent cross section upper limit and compare with any model cross section.

Event Selection

- CMS standard event quality cuts
- At least two jets
- Anti-kt R=0.7
- CMS jet quality cuts
- M_{jj}>220 GeV
- $|\eta| < 2.5 \& |\Delta \eta| < 1.3$

- ATLAS standard event quality cuts
- At least two jets
- Anti-kt R=0.6
- ATLAS jet quality cuts
- P_T(jet1)>80 GeV and P_T (jet2)>30 GeV
- M_{jj}>200 GeV
- $|\eta| < 2.5 \& |\Delta \eta| < 1.3$

Eta Cut Optimization

ATLAS Preliminary

ATLAS Preliminary

Dzturk

Eta Cut Optimization-II

- $|\Delta\eta|$ cut directly removes QCD t-channel pole in center of mass.
- $|\Delta\eta|$ < 1.3 optimal for isotropic decays (q*).

Dijet Mass (CMS)

- Both CMS and ATLAS fit the data to a function containing 4 parameters used by CDF Run II.
- Variable Dijet mass bin which are equal to dijet mass resolution of signal. (from 10% at 0,5 TeV to 6% at 2.5 TeV)
- There is a good fit.

$$\frac{d\sigma}{dm} = p_0 \frac{(1-X)^{p_1}}{X^{p_2+p_3\ln(X)}} \qquad x = m_{jj}/\sqrt{s}$$

Dijet Mass (ATLAS)

- The same fit function used by CDF Run II.
- The choice of dijet mass binning was motivated by the dijet mass resolution of the signal. (from 11% at 0.3 TeV to 7% at 1.7 TeV)
- There is good fit.
- No evidence of new physics.

$$\frac{d\sigma}{dm} = p_0 \frac{(1-X)^{p_1}}{X^{p_2+p_3\ln(X)}} \quad x = m_{jj}/\sqrt{s}$$

Resonance Shape

- CMS have simulated dijet resonances using CMS simulation + PYTHIA.
- qq, qg and gg resonances have different shape mainly due to FSR.
 - √ The width of dijet resonance increases with number of gluons because gluons emit more radiation than quarks.
- CMS search for these three basic types of narrow dijet resonance in our data.

Setting Limits

 For setting upper limit on the resonance production cross section, a Bayesian formalism with a uniform prior is used by CMS and ATLAS.

$$L = \prod_i \frac{\mu_i^{n_i} e^{-\mu_i}}{n_i!} \qquad \mu_i = \alpha N_i(S) + N_i(B).$$
 Measured # of events in data # of event from from background

- The signal comes from our dijet resonance shapes.
- The background comes from fixed to the best Background+Signal fit.
- The 95% CL upper limits are calculated for resonances with various masses.

Systematics

- We found the uncertainty in dijet resonance cross section from following sources.
 - √ Jet Energy Scale (JES)
 - I0% for CMS
 - from 10% to 6% as a function of Pt for ATLAS
 - √ Jet Energy Resolution (JER)
 - 10% for CMS
 - 14% for ATLAS
 - √ Choice of Background Parametrization
 - ✓ Luminosity
 - ▶ 11% for both CMS and ATLAS
- The all effects of systematics were incorporated as nuisance parameters.
- The posterior probability density for the cross section is broadened by convoluting it.

Incorporating Systematic

- We convolute posterior PDF with Gaussian systematics uncertainties.
 - ✓ Posterior PDF including systematics is broader and gives higher upper limit.

$$L(\sigma) = \int_0^\infty L(\sigma')G(\sigma,\sigma')d\sigma'$$

G: Gaussian distribution with RMS width equal to systematic uncertainty in cross section

ATLAS Results

- The mass limits for excited quark based on 315 nb-1 in ATLAS
 - √ 0.4<M(q*)<I.26 TeV with
 MRST2007
 </p>
 - √ 0.4<M(q*)<I.20 TeV with
 CTEQ6LI</p>
 - \checkmark 0.4<M(q*)<1.20 TeV with CTEQ5L
 - √ 0.26<M(q*)<0.87 TeV from CDF
 </p>

TABLE I. The 95% CL lower limits on the allowed q^* mass obtained using different PDF sets.

		Observed Mas	s Limit [TeV]	Expected Mass Limit [TeV]
MC Tune	PDF Set	Stat. \oplus Syst.	Stat. only	Stat. \oplus Syst.
MC09 [27]	MRST2007 [25]	1.26	1.28	1.06
MC09′ ^a	CTEQ6L1 [37]	1.20	1.23	0.99
Perugia0 [39]	CTEQ5L [38]	1.22	1.25	1.00

^a The MC09' tune is identical to MC09 except for the PYTHIA [24] parameter PARP(82)= 2.1 and use of the CTEQ6L1 PDF set.

CMS Results

- The mass limits with CTEQ6L1 based on 2.88 pb⁻¹ data in CMS:
- String
 - √ 0.50 < M(S) < 2.50 TeV
 </p>
 - $M(S) < 1.40 \text{ from CDF}^+ (1 \text{ fb}^{-1})$
- Excited Quark
 - √ 0.50<M(q*)<1.58 TeV
 </p>
 - $0.40 < M(q^*) < 1.26 \text{ from ATLAS } (0.32 \text{ pb}^{-1})$
- Axigluon/Coloron
 - √ 0.50<M(A)<1.17 TeV &
 1.47<M(A)<1.52 TeV
 </p>
 - 0.12<M(A)<1.25 TeV from CDF+ (1 fb-1)
- E₆ Diquark
 - √ 0.50<M(D)<0.58 TeV &
 0.97<M(D)<1.08 TeV &
 1.45<M(D)<1.60 TeV
 </p>
 - $0.29 < M(D) < 0.63 \text{ TeV from CDF}^+ (1 \text{ fb}^{-1})$

Conclusion

- CMS and ATLAS have been searching for dijet resonance.
- The dijet mass data is in good agreement with QCD from PYTHIA.
- There is no evidence for dijet resonances yet.
- CMS and ATLAS have published their results.
- CMS has the best mass limit on dijet resonance models, beyond those published by Tevatron and ATLAS.